
NExt ApplicationS of Quantum Computing

D5.12: Evaluation of quantum algorithms
for finance

Document Properties

Contract Number 951821

Contractual Deadline 31-10-2024

Dissemination Level Public

Nature Report

Editors Alberto Manzano, UDC
Gonzalo Ferro, CESGA

Authors Marı́a R. Nogueiras, HSBC
Gonzalo Ferro, CESGA
Alberto Manzano, UDC
Andrés Gómez, CESGA
Carlos Vázquez, UDC

Reviewers Mohamed Hibti, EDF
Jan Reiner, HQS

Date 28-10-24

Keywords Quantum Finance, Option Pricing, Amplitude Amplification and Esti-
mation, Quantum Accelerated Monte Carlo, Quantum Machine Learn-
ing, Parametric Quantum Circuits Pricing, VaR

Status Submitted

Release 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation program under Grant Agreement No. 951821

Ref. Ares(2024)7948056 - 08/11/2024

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

History of Changes

Release Date Author, Organisation Description of Changes

1.0 01/10/2024 Marı́a R. Nogueiras, HSBC
Gonzalo Ferro, CESGA
Alberto Manzano, UDC
Andrés Gómez, CESGA
Carlos Vázquez, UDC

First full version

1.1 22/10/2024 Marı́a R. Nogueiras, HSBC
Gonzalo Ferro, CESGA
Alberto Manzano, UDC
Andrés Gómez, CESGA
Carlos Vázquez, UDC

Revised version after internal reviewer’s com-
ments. After removing color text highlighting
main changes, it also coincides with the submit-
ted version on 28/10/2024.

© NEASQC Consortium Partners. All rights reserved. Page 2 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Table of Contents

1. Executive Summary 4

2. Introduction 5

3. Quantum Accelerated Monte Carlo 6
3.1. Conventional approach to QAMC . 7
3.2. QAMC in the presence of negative expectations . 9
3.3. An alternative pipeline for QAMC . 11

3.3.1. Direct Encoding . 11
3.3.2. Amplitude Estimation: mRQAE . 12

4. Quantum machine learning for risk assessment 16
4.1. The effect of normalization of PQCs . 17
4.2. Learning a financial distribution from samples with PQCs . 19
4.3. Numerical experiments in finance . 20

5. Conclusions 23

List of Acronyms 24

List of Figures 25

List of Tables 27

Bibliography 28

A. Description of the QAMC experiments 30

© NEASQC Consortium Partners. All rights reserved. Page 3 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

1.Executive Summary

This report presents the advancements in quantum computing techniques for quantitative finance within Use Case 5
(UC5) of the NEASQC project. The research is a collaborative effort among the University of A Coruña (UDC), the
Galician Supercomputing Center (CESGA), and the Hong Kong and Shanghai Banking Corporation (HSBC). Each
organization brings unique expertise to the project: UDC focuses on theoretical foundations, CESGA on technological
implementation, and HSBC on identifying industry-relevant problems.

The research addresses two main areas critical to HSBC: Quantum Accelerated Monte Carlo (QAMC) for option
pricing and Quantum Machine Learning (QML) for risk assessment using metrics such as Value at Risk (VaR). These
areas are essential for enhancing the efficiency and accuracy of financial modeling and risk management. More
specifically, QAMC aims to expedite the option pricing process, while QML provides advanced techniques for risk
assessment, offering deeper insights and more robust predictions.

Despite significant progress, the integration of these quantum techniques into industrial applications remains challeng-
ing due to current hardware limitations and the early stage of quantum computing technology. The project highlights
the need for further development of quantum hardware and algorithms to bridge the technological gap between classi-
cal and quantum methods.

Notable advancements include new techniques for QAMC and QML, which are particularly relevant for financial
institutions. The project has also produced five research papers and developed a comprehensive software library,
QQuantLib, to facilitate further research and experimentation.

In conclusion, while significant progress has been made in developing quantum algorithms for pricing and VaR esti-
mation, these algorithms are not yet enough competitive with classical algorithms on current Noisy Intermediate-Scale
Quantum (NISQ) architectures. The primary challenges for moving forward are related to the execution of QAMC
and QML algorithms, which require both deeper circuits (more layers of gates) and wider circuits (more qubits) than
are currently feasible on available quantum hardware.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

2.Introduction

This document focuses on the quantum computing techniques developed for quantitative finance within the context of
Use Case 5 (UC5) of the NEASQC project. This research is the result of a collaboration among three principal organi-
zations: the University of A Coruña (UDC), the Galician Supercomputing Center (CESGA), and the Hong Kong and
Shanghai Banking Corporation (HSBC). The partnership leverages the complementary expertise of each organization.
The University of A Coruña has concentrated on advancing the theoretical foundations and methodologies. The Gali-
cian Supercomputing Center has focused on technological implementation and essential support. Meanwhile, HSBC
has contributed by identifying and presenting industry-relevant problems related to option pricing and the computation
of Value at Risk (VaR), ensuring the practical applicability of the research outcomes.

This research encompasses two main areas, aligned with the primary interests of HSBC. The first area is Quantum
Accelerated Monte Carlo (QAMC) for option pricing. The second area is Quantum Machine Learning (QML) for risk
assessment, particularly using metrics such as VaR.

QAMC can significantly expedite the option pricing process, allowing for more timely and precise decision-making in
volatile markets. This is particularly crucial as classical Monte Carlo methods, while powerful, can be computationally
intensive and time-consuming when dealing with high-dimensional problems or when a large number of scenarios need
to be simulated. Quantum computing offers the potential to overcome these limitations through its ability to perform
certain calculations quadratically faster than classical computers.

Furthermore, as financial institutions like HSBC deal with increasingly complex risk models and regulatory require-
ments, the need for more sophisticated computational tools becomes apparent. In this scenario QML, presents a
promising avenue to address these growing computational demands in ways that classical computers cannot efficiently
match.

The document is divided into two parts. The first part concentrates on pricing using Monte Carlo (MC) techniques.
Section 3 briefly describes the core concepts of QAMC and its application in the context of pricing. Section 3.2
describes how to perform QAMC in the presence of negative values. This part concludes with Section 3.3, which
introduces a new end-to-end workflow, or ’pipeline’, for implementing QAMC. This pipeline encompasses the entire
process from data preparation to final output generation.

The second part delves into Quantum Machine Learning for risk assessment. Section 4.1 discusses the approximation
capabilities of Parametrized Quantum Circuits (PQCs), while Section 4.2 is reserved for recovering the shape of a
financial distribution from samples. This represents a key point in the computation of a risk measure like VaR. Finally,
the document wraps up with the conclusions.

In order to perform the experiments of the NEASQC project, several libraries have been developed under the QLM
platform provided by Atos (Atos, 2016). The primary library used for this report is QQuantLib, a financial applications
library available at (Ferro et al., 2024). The documentation of this library can be found under the aforementioned
repository. All experiments in part 3 were conducted using this library. Conversely, the experiments in part 4 were
performed with the PennyLane library (Bergholm et al., 2018). Additionally, the code for this second part has been
migrated to myQLM and can be found in (Ferro et al., 2024).

Finally, we included Appendix A which describes the simplifications made for the experimental evaluation of the
QAMC algorithms.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

3.Quantum Accelerated Monte Carlo

The problem of derivative pricing can be reduced in many cases to computing an expectation. More specifically, by
using mathematical finance tools, mainly martingale properties and Itô’s lemma. The price of a derivative contract Vt

on an underlying asset St can be written as (see, for example (Hull, 1997)):

Vt = V (t, St) = e−r(T−t)EQ[F (ST)|Ft], (3.1)

where T is the maturity of the contract, EQ denotes the expectation under the risk neutral measure Q, r is the constant
risk-free interest rate at time t, F defines the payoff of the derivative and Ft denotes the σ-algebra containing the
information until time t. In this way, expression (3.1) indicates that the value of the derivative is the discounted price
of the expected value of the payoff, conditioned to the current information of the market.

In the work developed in collaboration with HSBC, we have focused on European vanilla and digital options whose
payoff only depends on the value of the asset at maturity, VT = F (ST). Thus, if we denote the strike price by K, the
corresponding payoffs are (see also Figure 1):

• Vanilla call option: F (x) = max(x−K, 0).

• Digital call option: F (x) = 1x>K .

• Vanilla put option: F (x) = max(K − x, 0).

• Digital put option: F (x) = 1x<K .

0 0.5 1 1.5 2
0

0.5

1

1.5

V
an

ill
a

Call

0 0.5 1 1.5 2
0

0.5

1

1.5

Put

0 0.5 1 1.5 2
0

0.5

1

1.5

D
ig

ita
l

0 0.5 1 1.5 2
0

0.5

1

1.5

x

Pa
yo

ff

Figure 1: Payoff functions for digital and vanilla options with K = 1.

In the previous options, the derivative price is always non-negative. Moreover, in order to illustrate some advantages
of one of the proposed quantum algorithms, we have considered linear payoffs:

F (x) = x−K,

© NEASQC Consortium Partners. All rights reserved. Page 6 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

so that the value of the derivative can be also negative (see also Figure 2).

0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

x

Pa
yo

ff

Figure 2: Linear payoff with K = 1.5.

The computation of the expectation in Equation (3.1) is usually achived through Classical Monte Carlo (CMC) meth-
ods (see (Gómez et al., 2022), for example). However, QAMC is a promising approach that offers a quadratic speedup
compared to CMC, making it an attractive option for solving complex financial problems. This technique was first
introduced in (Montanaro, 2015). Later, in (Rebentrost et al., 2018) it was proposed for the first time to the task of
pricing financial contracts. However, it was not until the publications of (Egger et al., 2020; Stamatopoulos et al.,
2020), that QAMC was implemented for pricing and VaR on a real quantum computer.

All of the techniques grouped into the category of QAMC share a common structure or pipeline:

• The construction of an oracle US which is able to load the path probability distribution.

• The application of a second unitary UF which encodes the payoff of the target contract.

• The measurement of a state which encodes the solution of the problem by means of Amplitude Estimation (AE)
techniques.

In this section we will focus on an alternative pipeline to perform QAMC. First, in Section 3.1 we describe the standard
procedure to perform QAMC (for a more in depth discussion see (Manzano, 2024)). Next, in Section 3.2 we introduce
the problem of pricing derivative contracts with negative values under the QAMC framework. Finally, in Section 3.3
we propose an alternative pipeline for QAMC which circumvents some of the burden associated with pricing derivative
contracts with negative values.

3.1. Conventional approach to QAMC

The QAMC algorithm begins by creating an oracle US which produces samples S according to an underlying proba-
bility distribution p(Sk):

|S⟩ := US |0⟩ :=
K−1∑
k=0

√
pS(Sk) |Sk⟩ , (3.2)

where K is the number of possible paths and pS(Sk) is the probability of generating the path Sk (Manzano, Ferro,
et al., 2023).

In the case of derivative pricing, the samples represent paths of an underlying asset and the probability distribution is
usually modelled through a stochastic differential equation (SDE). The construction of the oracle loading the proba-
bility into the quantum state is discussed in more depth in (Manzano, 2024).

The key takeaway is that the computational cost of one execution of the circuit is equivalent to one execution of the
classical circuit, i.e., the number of gates needed to sample one path from the classical and the quantum circuit are

© NEASQC Consortium Partners. All rights reserved. Page 7 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

“the same”, since the classical circuit can always be translated to a quantum one using Toffoli gates (see (Nielsen &
Chuang, 2011), for example). However, note that classical and quantum gates are not directly comparable.

Once the state |S⟩ in Equation (3.2) is generated, the next step is to define the operator U√
F such that it pushes the

square root of the derivatives payoff F into the amplitude. For this reason, we will call this way of encoding square
root encoding. For this purpose, an additional single qubit register is needed:

|
√
F ⟩ = U√

F |S⟩ |0⟩

=
1

∥
√
F (S)∥∞

K−1∑
k=0

(√
pS(Sk)F (Sk) |Sk⟩ |0⟩+

√
pS(Sk) (1− F (Sk)) |Sk⟩ |1⟩

)
.

(3.3)

Moreover, it is tacitly assumed that the operator U√
F can be efficiently implemented. Figure 3 depicts schematically

the overall process.

|0⟩ US

U√
F

1

∥
√
F (S)∥∞

K−1∑
k=0

(√
pS(Sk)F (Sk) |Sk⟩ |0⟩

√
pS(Sk) (1− F (Sk)) |Sk⟩ |1⟩

)
.

|0⟩

Figure 3: Scheme of the generation of the oracle in the square root encoding. The gate US corresponds to Equation
(3.2). The gate U√

F corresponds to Equation (3.3).

The probability of measuring zero in the rightmost register is given by:

P|0⟩ =
1

∥
√
F (S)∥2∞

K−1∑
k=0

|pS(Sk)F (Sk)| . (3.4)

Hence, getting an estimation P̃|0⟩ of P|0⟩ yields an estimation of the expectation in Equation (3.1) except for the
normalization constants:

E[F (ST)|Ft] =

K−1∑
k=0

pS(Sk)F (Sk) + ϵS ≈
∥∥∥√F (S)

∥∥∥2
∞

P̃|0⟩ + ϵS + ϵQAMC, (3.5)

where
∑K−1

k=0 pS(Sk)F (Sk) is the approximation of the expectation in Equation (3.1), ϵS is the error from approxi-
mating the expectation, P̃|0⟩ is an estimation of the probability of obtaining zero in the last register and ϵQAMC is the
sampling error defined as,

ϵQAMC:=

∣∣∣∣∣
K−1∑
k=0

pS(Sk)F (Sk)−
∥∥∥√F (S)

∥∥∥2
∞
P̃|0⟩

∣∣∣∣∣ . (3.6)

By using amplitude estimation techniques, we know that the sampling error ϵQAMC is of order (Brassard et al., 2002):

ϵQAMC ∼ 1

NQ
, (3.7)

with NQ being the number of calls to the oracle defined by Equation (3.3). In the sampling error scales as:

ϵCMC ∼ 1√
NC

. (3.8)

Since we argued that a call to the quantum oracle is equivalent to the generation of a sample in the classical case, we
say that there is a quadratic speedup.

To wrap up this section, in Figure 4 we show the results of the QAMC for different payoffs when the modified Iterative
Quantum Amplitude Estimation (mIQAE) algorithm is used to estimate P|0⟩. Further details on the implementation
can be found in the Appendix A.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

10−710−610−510−410−310−2
103

104

105

106

107
V

an
ill

a

Call

10−710−610−510−410−310−2
103

104

105

106

107

Put

10−710−610−510−410−310−2
103

104

105

106

107

D
ig

ita
l

10−710−610−510−410−310−2
103

104

105

106

107

ϵQAMC

N
Q

mIQAE

Figure 4: Absolute error between the QAMC algorithm and the discretized expectation versus the respective number
of calls to the oracle for different precisions ϵ. The dots represent the medians and the error bars the 25 and 75

percentiles. Each of the panels corresponds to the payoff of different options. The experiments have been performed
using the square root encoding.

3.2. QAMC in the presence of negative expectations

It is important to note that, for derivatives whose payoffs can become negative, the naive use of QAMC will not yield
correct price approximations. In order to illustrate this, suppose that there is a payoff of the form:

F (ST) = ST −K, (3.9)

with T being the maturity of the contract, ST the price of the underlying asset at maturity and K the strike price of the
contract (see (Gómez et al., 2022) for details). Figure 5 shows the results for the the square root encoding combined
with the mIQAE for a naive implementation of QAMC. It illustrates that there is no convergence to the correct value
because of the presence of the absolute value in Equation (3.4).

In order to avoid the errors introduced by the presence of the absolute values in the QAMC, whenever we have a payoff
that is potentially negative we must divide our problem into two distinct problems. On the one hand, we must define
the positive part of our target function:

F+(ST) = max(F (ST), 0). (3.10)

On the other hand, we define the negative part of our target function:

F−(ST) = |min(F (ST), 0)| . (3.11)

Therefore, we can express our payoff as a linear combination of the positive and negative parts:

F (ST) = F+(ST)− F−(ST). (3.12)

© NEASQC Consortium Partners. All rights reserved. Page 9 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

10−1100101
103

104

105

106

107

108

ϵQAMC

N
Q

mIQAE Square

Figure 5: Absolute error between the QAMC algorithm and the discretized expectation of an option with a payoff
(ST −K) with K = 1.5St versus the number of calls to the oracle for different values of precision ϵ. The dots

represent the medians and the error bars the 25 and 75 percentiles. The experiments have been performed using the
square root encoding.

In terms of estimation we need to perform a separate estimation of both the positive and negative parts using the
conventional approach to QAMC described in Section 3.1 and then combine the results. The only issue that we have
to take into consideration when combining the positive and negative estimations is that the errors add up together,

ϵQAMC = ϵ+QAMC + ϵ−QAMC, (3.13)

so that, in order to get a total error of ϵQAMC we usually take:

ϵ+QAMC =
ϵQAMC

2
, ϵ−QAMC =

ϵQAMC

2
. (3.14)

Applying this decomposition, the mIQAE provides the results in Figure 6.

10−610−510−410−310−2

104

105

106

107

ϵQAMC

N
Q

IQAE Square

Figure 6: Absolute error between the QAMC algorithm and the discretized expectation of an option with a payoff
(ST −K) with K = 1.5St versus the number of calls to the oracle for different values of precision ϵ. The dots

represent the medians and the error bars the 25 and 75 percentiles. The experiments have been performed using the
square root encoding separating the positive and negative parts of the payoff.

© NEASQC Consortium Partners. All rights reserved. Page 10 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

3.3. An alternative pipeline for QAMC

In this section, we develop a new strategy which does not require the user to separate the problem into two. On the
one hand, in Section 3.3.1 a new encoding is proposed. On the other hand, in Section 3.3.2 a different amplitude
estimation technique is employed. The combination of both produces an alternative pipeline to the standard QAMC.

3.3.1. Direct Encoding

The direct encoding algorithm starts from the same initial state |S⟩:

|S⟩ = US |0⟩ =
K−1∑
k=0

√
pS(Sk) |Sk⟩ , (3.15)

where K is again the number of possible paths defined by the given discretization. The next step is to define the
operator UF such that it pushes the payoff without squared roots into the amplitude. For this purpose, an additional
single qubit register is needed, so that:

|F ⟩ = UF |S⟩ |0⟩

=
1

∥F (S)∥∞

K−1∑
k=0

(√
pS(Sk)F (Sk) |Sk⟩ |0⟩+

√
pS(Sk) (1− F (Sk)) |Sk⟩ |1⟩

)
.

(3.16)

Next, we apply the inverse of the US unitary on the state |F ⟩ (see Figure 7), thus getting:

U†
S |F ⟩ = 1

∥F (S)∥∞

K−1∑
k=0

(pS(Sk)F (Sk) |0⟩ |0⟩+ · · ·) . (3.17)

The square root probability of measuring the eigenstate zero is:

√
P|0⟩ =

∣∣∣⟨0|U†
SUFUS |0⟩

∣∣∣ = 1

∥F (S)∥∞

∣∣∣∣∣
K−1∑
k=0

pS(Sk)F (Sk)

∣∣∣∣∣ . (3.18)

Note the difference between P|0⟩ from the square root encoding in Equation (3.5) and P|0⟩ from the direct encoding
in Equation (3.18). The former one refers to the probability of measuring zero in the last register when the unitary
U√

FUS is applied. The latter refers to the probability of measuring the eigenstate zero when the unitary U†
SUFUS

is applied. Finally, we apply an AE algorithm to obtain an estimate P̃|0⟩ of P|0⟩, thus getting an estimation of the

|0⟩ US

UF

U†
S

1

∥F (S)∥∞

K−1∑
k=0

pS(Sk)F (Sk) |0⟩ |0⟩+ · · ·
|0⟩

Figure 7: Scheme of the generation of the oracle in the direct encoding. The gate US corresponds to Equation (3.2).
The gate UF corresponds to Equation (3.16).

expectation in Equation (3.1):

E[F (ST)|Ft] =

K−1∑
k=0

pS(Sk)F (Sk) + ϵS ≈ ∥F (S)∥∞
√
P̃|0⟩ + ϵS + ϵQAMC, (3.19)

where
∑K−1

k=0 pS(Sk)F (Sk) is the approximation of the expectation in Equation (3.1), ϵS is the error from approxi-
mating the expectation, P̃|0⟩ is an estimation of the probability of obtaining zero in the last register and ϵQAMC is the
sampling error given by,

ϵQAMC:=

∣∣∣∣∣
K−1∑
k=0

pS(Sk)F (Sk)− ∥F (S)∥∞
√
P̃|0⟩

∣∣∣∣∣ . (3.20)

© NEASQC Consortium Partners. All rights reserved. Page 11 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

This procedure allows pricing options with negative payoffs when the expected value is positive. However, the pres-
ence of the outer absolute value in Equation (3.18) still prevents from a correct estimation when negative expectations
arise.

In Figure 8 we show the results obtained for the same payoffs as in Figure 4 with both the direct and the square root
encoding. As we can see from the figure, the impact of using one or the other encoding is minimal in practice.

10−710−610−510−410−310−2
103

104

105

106

107

E
ur

op
ea

n

Call

10−710−610−510−410−310−2
103

104

105

106

107

Put

10−710−610−510−410−310−2
103

104

105

106

107

D
ig

ita
l

10−710−610−510−410−310−2
103

104

105

106

107

ϵQAMC

N
Q

mIQAE Square mIQAE Direct

Figure 8: Absolute error between the QAMC algorithm and the discretized expectation versus the respective number
of calls to the oracle for different precisions ϵ. The dots represent the medians and the error bars the 25 and 75

percentiles. Each of the panels corresponds to the payoff of a different option. The experiments have been performed
using the square root and direct encodings.

3.3.2. Amplitude Estimation: mRQAE

In the previous section it was discussed that the discretized expectation can be estimated through the probability of
measuring the eigenstate zero of UDE:

√
P|0⟩ =

1

∥F∥∞

∣∣∣∣∣
K−1∑
k=0

pS(Sk)F (Sk)

∣∣∣∣∣ .
Thus, this partially solves the initial problem. Instead of obtaining the sum of absolute values, something proportional
to the absolute value of the sum is returned. Hence, in a situation where the sign of the expectation is of interest, an
additional mechanism to overcome this issue is needed. In fact, this is usually the case in financial applications, where
the sign makes the difference between a profit and a loss.

For this case, we introduce the modified real quantum amplitude estimation (mRQAE) algorithm. The mRQAE is a
modified version of the real quantum amplitude estimation (RQAE) (see (Manzano, Musso, & Leitao, 2023)). The
main feature of both algorithms is that they are able to read out the size and the sign of the target amplitude. They

© NEASQC Consortium Partners. All rights reserved. Page 12 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

internally work performing several iterations where, in each iteration they use the Grover amplification algorithm to
incrementally amplify the probability of obtaining the target quantum state. The main difference between them is that
the number of calls to the amplified state Ni, the confidence on each iteration γi and the required precision on each
iteration ϵpi are chosen in a different manner. In turn, this makes the mRQAE asymptotically more efficient. More
precisely, in Table 1 we show the performance of the mRQAE and the RQAE measured in terms of the number of
calls to the oracle NQ for a given precision ϵ and confidence γ along with the performance of other popular amplitude
estimation algorithms in the literature including the aforementioned mIQAE. In Algorithm 1 there is a schematic
description of the code for the mRQAE. For a more thorough revision of the properties of the method we refer the
reader to (Manzano, 2024).

Algorithm 1 mRQAE pseudocode.

Input:
ϵ // Required precision
γ // 1 − γ is the confidence level
q // Amplification policy
A // Oracle

Output:
a // Estimated amplitude with sign

Algorithm:
// Define relevant parameters

Set ϵp(q,∞) =
1

2
sin2

(
π

4q

)

Set T = logq

q2
2 arcsin

(√
2ϵp(q,∞)

)
arcsin (2ϵ)

Set kmax =

arcsin

(√
2ϵp(q,∞)

)
arcsin (2ϵ)

−
1

2

Set ϵp(q, 0) =

1

2
sin

(
π

2(q + 2)

)
i = 1 // First Iteration

Set γi =
γ

2

q − 1

q

1

2kmax + 1
// Confidence for each iteration

Set Ni =

⌈
1

2(ϵp(q, 0))2
log

(
2

γi

)⌉
// Number of shots

Set ϵp
i

=

√√√√ 1

2N1

log

(
2

γi

)
Set b = 0.5 // Shift
Measure psum and pdiff

amax = min

(
p̂sum − p̂diff

4b
+

ϵ
p
i

|2b|
, 1

)

amin = max

(
p̂sum − p̂diff

4b
−

ϵ
p
i

|2b|
,−1

)

a =
amax + amin

2

ϵa =
amax − amin

2
// Following Iterations

while ϵa > ϵ do
i = i + 1

Set b = −amin // Shift

Set k =

⌊
π

4 arcsin(2ϵa)
−

1

2

⌋
// Number of amplifications

k = min(k, kmax)

Set ϵp(q, k) =
1

2
sin2

π

4

(
q +

2

2k + 1

)

Set γi =
γ

2

q − 1

q

2k + 1

2kmax + 1
// Confidence

Set Ni =

⌈
1

2(ϵp(q, k))2
log

(
2

γi

)⌉
// Number of shots

Set ϵp
i

=

√√√√ 1

2Ni

log

(
2

γi

)
Measure p // Shifted probability

// with k amplifications
pmax = min(p + ϵ

p
i
, 1)

pmin = max(p − ϵ
p
i
, 0)

θmax =
arcsin(

√
pmax)

2k + 1

θmin =
arcsin(

√
pmin)

2k + 1
amax = sin

(
θmax) − b

amin = sin
(
θmin

)
− b

a =
amax + amin

2

ϵa =
amax − amin

2
end while
return a

In Figure 9, an example where the price of the derivative becomes negative is shown. As it is shown, mRQAE is able
to recover the true price without requiring additional mechanisms. Moreover, it is competitive with the mIQAE which
is currently considered one of the most efficient algorithms in the literature in terms of number of calls to the oracle.

In Figure 10, we show that the mRQAE obtains a reasonable performance compared with the mIQAE when we use it
for contracts with positive payoff.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

10−610−510−410−310−2

104

105

106

107

ϵQAMC

N
Q

mIQAE Square
mIQAE Direct
mRQAE Direct

Figure 9: Absolute error between the QAMC algorithm and the discretized expectation of an option with a payoff
(ST −K) with K = 1.5St versus number of calls to the oracle for different values of precision ϵ. The dots represent
the medians and the error bars the 25 and 75 percentiles. For the mRQAE we have used the direct encoding and for

the mIQAE we have applied both techniques. Moreover, in the case of the mIQAE we have separated the negative and
positive parts of the payoff for a correct pricing.

10−710−610−510−410−310−2
103

104

105

106

107

E
ur

op
ea

n

Call

10−710−610−510−410−310−2
103

104

105

106

107

Put

10−710−610−510−410−310−2
103

104

105

106

107

D
ig

ita
l

10−710−610−510−410−310−2
103

104

105

106

107

ϵQAMC

N
Q mIQAE Square mIQAE Direct mRQAE Direct

Figure 10: Absolute error between the QAMC algorithm and the discretized expectation versus the respective
number of calls to the oracle for different precisions ϵ. The dots represent the medians and the error bars the 25 and
75 percentiles. Each of the panels corresponds the payoff of a different option. For the mRQAE we have used the

direct encoding and for the mIQAE we have applied both techniques.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Algorithm Performance
Monte Carlo NMC

Q = O
(

1
ϵ2

)
QPE(Brassard et al., 2002) NQPE

Q = O
(
1
ϵ

)
MLAE-LIS(Suzuki et al., 2020) NLIS

Q = O
(

1

ϵ
4
3

)
MLAE-EIS(Suzuki et al., 2020) NEIS

Q = O
(
1
ϵ

)
PLAE(Giurgica-Tiron et al., 2022) NPLAE

A = O
(

1
ϵ1+β

)
, d = O

(
1

ϵ1−β

)
Improved MLAE(Callison & Browne, 2022) N impMLAE

Q = O
(

1
ϵ
1
d
log(1

γ
)
)

, d = 2q−2

IQAE (Grinko et al., 2021) N IQAE
Q < 50

ϵ
log

(
2
γ
log2

π
4ϵ

)
mIQAE(Fukuzawa et al., 2023) NmIQAE

Q < 123
ϵ

log 6
γ

QCoin (Abrams & Williams, 1999) NQCoin
Q = O

(
1
a

1
ϵ
log 1

γ

)
, k ≥ 2, 1 ≥ q ≥ (k − 1)

QoPrime (Giurgica-Tiron et al., 2022) NQoPrime
Q < C⌈ k

q
⌉ 1

ϵ1+q/k log
(

4
γ
⌈ k
q
⌉
)

, d = O
(

1

ϵ1−q/k

)
FasterAE (Nakaji, 2020) N fasterAE

Q < 4.1·103
ϵ

log
(

4
γ
log2

(
2π
3ϵ

))
AdaptiveAE (Zhao et al., 2022) N adaptiveAE

Q < O
(

1
ϵ
log

(
π2(T+1)

3γ

))
, T = ⌈ log π

Kϵ
logK

⌉

RQAE (Manzano, Musso, & Leitao, 2023) NRQAE
Q < C1(q)

ϵa
log

[
3.3
γ

logq

(
C2(q)

ϵ

)]
mRQAE (Manzano, 2024) NMRQAE

Q < C1(q)
ϵ

log
[
C2(q)

γ

]
Table 1: Performance of different amplitude estimation algorithms. NQ denotes the number of calls to the oracle, ϵ is

the target precision and 1− γ is the confidence level. Other parameters appearing in the table are related to each
specific algorithm. For a full description of their meaning the reader is referred to the associated references. The ∼

symbol indicates that the algorithm has an asymptotic behaviour, while the < indicates that the performance is
proved rigorously.

© NEASQC Consortium Partners. All rights reserved. Page 15 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

4.Quantum machine learning for risk assessment

Machine learning has gained significant attention in recent years for its practical applications and transformative
impact in various fields. As a consequence, there has been a rising interest in exploring the use of quantum circuits as
machine learning models, capitalizing on the advancements in both fields to unlock new possibilities and potential
breakthroughs. Among the various possibilities for leveraging quantum circuits in machine learning, our particular
focus lies on parametrized quantum circuits (PQC). These quantum circuits consist of both fixed and adjustable
(hence ’parametrized’) gates. When used for a learning task, a classical optimiser updates the parameters of the
PQC in order to minimize a cost function depending on measurement results from this quantum circuit (see Figure 11).

|0⟩⊗n U(x,θ) fθ(x)

R(fθ)

Figure 11: Sketch of a hybrid variational algorithm. U(x, θ) represents a quantum circuit that takes x as input and
with variational parameters θ, fθ(x) is the expected value of some observable and R(fθ) is the expected loss that we

want to minimize.

More specifically, we use the same structure for the PQCs as in (Schuld et al., 2021), where they considered a quantum
machine learning model of the form

fθ(x) = ⟨0|U†(x;θ)MU(x;θ) |0⟩ , (4.1)

where M is an observable, U(x;θ) is a quantum circuit modelled as a unitary that depends on inputs x =
(x0, x1, ..., xN) and the variational parameters θ = (θ0, θ1, ..., θT). Note that in Equation (4.1) we understand that
the quantum model fθ(x) is obtained as the expectation value of the observable with respect to the state prepared via
the parametrized circuit from the initial state |0⟩. Throughout the report we will refer to the PQC as the one approx-
imating the functions to make the text more fluent, although technically it is the expectation value of the PQC that
approximates the function.

The quantum circuit consists of L layers, each one composed by a trainable circuit block Wi(θ), i ∈ {1, ..., L} and
a data encoding block S(x) as shown in Figure 12. Such structure is called a re-uploading structure (Pérez-Salinas
et al., 2020), since the input is uploaded multiple times along the circuit.

The specific application that we are interested in is financial risk. When a financial institution deals with risk it
typically needs to estimate (either implicit or explicitly) the “shape” of an underlying distribution from samples. This
estimation is specially delicate in the tails of the distributions, since the tails are usually very difficult to estimate
with precision and are connected to unlikely events which can potentially shatter the financial stability of a firm. For
this reason, there exist very popular risk metrics such as Value at Risk (VaR) which measures the potential loss in
case of an unlikely event. This risk metric is straightforward to compute once that we have obtained the shape of
the financial distribution, since we only need to compute a quantile of the distribution. The application of differential
machine learning for recovering the shape of the tails can have a meaningful impact since it forces our estimates of
the distribution to converge to the distribution pointwise and not just on average. However, in order for differential
machine learning to work with samples instead of labels some adjustments need to be done.

This part of the report is organized in two main blocks. First, in Section 4.1 we discuss the impact of normalization
in PQCs. Second, in Section 4.2 we apply a new loss function to the problem of recovering the shape of a financial
distribution from samples.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Layer 1 Layer 2 Layer L

...
.

|0⟩

S(x) W1(θ) S(x) W2(θ) S(x) WL(θ)

|0⟩

|0⟩

Figure 12: Parametrized quantum circuit that can be written as a generalized trigonometric series as in (4.1). It
consists of L layers, each layer is composed by a trainable circuit block Wi(θ), i ∈ {1, ..., L} and a data encoding
block S(x). The data encoding blocks S(x) are identical for all layers, they are typically implemented using Pauli

rotations. The blocks Wi(θ) can be built from local rotation gates and CNOT gates.

4.1. The effect of normalization of PQCs

In this section we illustrate the practical implications of data normalization with the approximation of the function:

f∗(x) =
x

2π
, x ∈ [−π, π], (4.2)

by the PQC in Figure 13.

Layer 1 Layer 2 Layer 3

|0⟩ Rx(x) Ry(θ11) Rx(x) Ry(θ12) Rx(x) Ry(θ13)

|0⟩ Rx(x) Ry(θ21) Rx(x) Ry(θ22) Rx(x) Ry(θ23)

Figure 13: Architecture U (x,θ) used in the experiments of Section 1.3. The parameters θij are variational
parameters.

We conduct a numerical experiment to compare the performance of our PQC under different normalizations
and show the obtained results in Figure 14. In this framework, we are given a data set S of I = 10 pairs of
independent samples (10 for the labels plus 10 for the derivative values when they are present) uniformly distributed
along the domain for the training phase. Each pair is composed of an input x defined in a domain X ∈ [−π, π] and
and output y defined in a co-domain Y ∈ [−1/2, 1/2] sampled according to a uniform probability distribution U :

S = {(xi, f
∗(xi)) ∈ Z = X × Y ∼ U(x) : ∀i ∈ {1, ..., I}}. (4.3)

All simulations have been performed using 10 points. Each experiment has been repeated 100 times and we depict
the 25, 50 and 75 percentiles in colored solid lines in Figure 14. The legends denote the result of the PQCs as f•(·),
where the subscript denotes under which loss function we have done the training and, in the parentheses, we indicate
which normalisation we have chosen.

In this case, the loss function that we have chosen is the mean squared error (here denoted by L2):

RS
L2(f) =

1

I

I−1∑
i=0

(f∗(xi)− f(xi))
2, (4.4)

and we normalised the data to lie in the domains
[
−π

2 ,
π
2

]
, [−π, π] and [−2π, 2π], respectively. The experiments h

As illustrated in Figure 14, when we normalise our data to lie in the range [−π
2 ,

π
2] we get the best results, the

© NEASQC Consortium Partners. All rights reserved. Page 17 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

second best for the interval [−π, π] and the worst one with the interval [−2π, 2π]. This behaviour remains even when
increasing the size of the circuit and the number of given points.

This results are a consequence of the approximation capabilities of each circuits depending on the normalization.

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

f∗

fL2

([
−π

2 ,
π
2

])

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

f∗

fL2 ([−π, π])

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

f∗

fL2 ([−2π, 2π])

Figure 14: In this picture we have trained the PQC of Figure 13 to approximate the function f∗(x) = x
2π . We have

used 10 training points, the mean squared error loss function and 100 epochs with the Adam optimizer. The
experiments have been repeated 100 times. In the top left panel we have normalised the data to lie in the interval[
−π

2 ,
π
2

]
. In the top right panel we have normalised the data to lie in the interval [−π, π]. In the bottom central panel

we have normalised the data to lie in the interval [−2π, 2π].

More specifically, Theorem 5.2.2 from (Manzano, 2024) proofs that under the normalization
[
−π

2 ,
π
2

]
we are able to

approximate any function in the sense of the C0 space. In layman terms this means that we are able to arbitrarily
reduce the maximum error as we increase the expressivity of the circuit and the number of samples. On the contrary,
Theorem 5.2.1 from (Manzano, 2024) proofs that under the normalization [−π, π] we are only able to approximate
any function in the sense of the L2 space. In layman terms this means that we are able to reduce the “average” error
as we increase the expressivity of the circuit and the number of samples but we are not able to reduce the maximum
error. Contrary to the intuition, if we increase the expressivity and the number of samples the results on the boundaries
become poorer and poorer. In other terms, since we are only reducing the error on average we see a tradeoff: we
improve the results in the bulk of the domain while we deteriorate it in regions which become narrower. Although the
results in certain regions, since those regions become smaller at a faster pace we obtain positive net effect, i.e., the
error is reduced.

However, the fact that we can reduce the maximum error does not mean that the maximum error is reduced. Apart
from the approximation capabilities of our circuit there are more pieces into play. Namely, the election of the loss
function and the minimization routine. Here we don’t discuss the minimization routine, but, in the next section we
discuss further the impact of the loss function.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

4.2. Learning a financial distribution from samples with PQCs

As we have seen, proper normalization of our data greatly improves the expressivity of our PQC, which potentially
affects the overall performance of our PQC. However, the minimization problem is made of various pieces, each of
which plays a relevant role in their own terms and, if we want to boost the overall performance of the algorithm, we
need to work on each of them. The piece that we will focus hereon is the loss function. Our main goal is reducing not
only the average error, but also the maximum one.

For this purpose, in the work (Huge & Savine, 2020) they introduce the concept of differential machine learning
(DML). The idea is to compute a loss function depending not only in the target function but also on the derivatives
of the target function with respect to the inputs. In the same work they showed that this trick can greatly improve the
performance of our machine learning models in practice. Moreover, in (Manzano, 2024) they theoretically proof that
the minimization of such loss function produces a minimization of the maximum error, with the advantage of being
differentiable. However, there is a big caveat: when do we have this information?

In this section, we present an extension of the idea of differential machine learning to the task of learning a Cumulative
Distribution Function (CDF) and its derivative, the Probability Density Function (PDF), from samples.

When we work in the context of probability distributions, instead of working with labeled samples we work with
samples from the probability distribution, i.e., we have a dataset of the form:

SX = {(xi) ∈ X : xi ∼ F ∗, i ∈ {0, ..., I − 1}}, (4.5)

where I is the number of samples, F ∗ denotes the distribution function and xi = (x
(1)
i , ..., x

(n)
i).

In this context, we will define an empirical risk depending on both, the distribution function F ∗ and the density
function f∗. This loss function will consist of two parts.

The first part of the empirical risk RSX
L2 (F) only depends on the distribution function and is defined as:

RSX
L2 (F) =

1

I

I−1∑
i=0

(
F ∗

emp(xi)− F (xi)
)2

, (4.6)

where the empirical distribution function1 F ∗
emp(x) is defined as follows:

F ∗
emp(x) =

1

I

I−1∑
i=0

1xi≤x. (4.7)

The second part of the empirical risk RSX

L
2 (f) only depends on the density function and is defined as:

RSX

L
2 (f) = −2

I

I−1∑
i=0

f(xi) +Q(f2), (4.8)

where Q(f2) denotes the integral of f2 over the domain.

Combining the empirical risk for the CDF from Equation (4.6) and the empirical risk for the PDF from Equation (4.8)
we obtain the following empirical risk:

RSX

L2,L
2(F) =

1

I

I−1∑
i=0

(
F ∗

emp(xi)− F (xi)
)2 − 2

I

I−1∑
i=0

f(xi) +Q(f2), (4.9)

where we recall that the density function f can be written in terms of the distribution function F as:

f(x) =
∂nF

∂x(1) · · · ∂x(n)

∣∣∣∣
x

. (4.10)

In this way, we have defined a distance which does not make use of the labels. For a more in depth discussion of the
election of the two risk functions see (Manzano, 2024).

1The Glivenko–Cantelli theorem states that the empirical CDF converges uniformly to the true CDF almost surely (Cantelli, 1933).

© NEASQC Consortium Partners. All rights reserved. Page 19 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

The solution of this minimization problem gives us both the distribution and density functions, which allows us to
compute different risk metrics. One of the most popular ones being the VaR. This is an estimate of how much one
can lose from one’s portfolio over a given time horizon, with a given degree of confidence (Wilmott, 2007). More
specifically, given a confidence level α ∈ (0, 1), the VaR of a portfolio can be defined as,

VaRα = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : FL(l) ≥ α},

where FL is the distribution function of the total loss random variable L (we emphasize the dependence of VaR with
respect to the risk exposures).

In the next section, we will mainly focus in the first part of recovering the full shape of the distribution and density
functions, since it is a broader problem and the most of the computational resources are expended here and we will
make a brief comment on the computation of the VaR.

4.3. Numerical experiments in finance

In this section we will compare the performance of the two empirical risks RSX
L2 and RSX

L2,L
2 in the context of finance.

For this purpose we choose two of the most popular distribution functions in finance: the normal and lognormal
distributions. The CDF and PDF of the normal distribution with mean µ and and variance σ2 are, respectively

F ∗
N(x) =

1

2

[
1 + erf

(
x− µ

σ
√
2

)]
, f∗

N(x) =
1

σ
√
2π

e
−
1

2

(
x− µ

σ

)2

. (4.11)

The CDF and PDF of the lognormal distribution with parameters µ and σ are:

F ∗
LN(x) =

1

2

[
1 + erf

(
ln(x)− µ

σ
√
2

)]
, f∗

LN(x) =
1

xσ
√
2π

exp

(
−
(
ln(x)− µ

σ
√
2

)2
)
. (4.12)

In finance, the lognormal distribution has a special prevalence through the Black-Scholes model, which assumes that
the evolution of prices follow a Geometric Brownian Motion (GBM), that satisfies the SDE:

dXt = µBSXtdt+ σBSXtdWt. (4.13)

The distribution of prices for a given time T are lognormal with parameters:

µ = (µBS − 0.5σ2
BS)T, σ = σBS

√
T . (4.14)

The first experiment that we conducted to compare the performance under the different loss functions is shown in

Layer

|0⟩ Rx(x) Ry(θ11)

|0⟩ Rx(x) Ry(θ21)

Figure 15: One layer of the PQC used in the experiments. For the experiments we use a total of three layers. The
parameters θij are variational parameters.

Figure 16. All simulations have been performed using 10 samples of the normal distribution with mean zero and
variance one. Each experiment has been repeated 100 times and we depict the 25, 50 and 75 percentiles in colored
solid lines. As we can see in Figure 16 the results obtained by using the differential machine learning approach are
much better than the ones obtain by just mapping to the empirical CDF. On the one hand, because the variance is
smaller when using the Lh loss function. On the other hand, because we obtain a much better performance on the tails.

© NEASQC Consortium Partners. All rights reserved. Page 20 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

F∗
N

F
L2,L

2

−3 −2 −1 0 1 2 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

F∗
N

FL2

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

f∗N
f
L2,L

2

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

f∗N
fL2

Figure 16: In this picture we have trained the PQC of Figure 15 with three layers to approximate the standard
normal distribution (i.e., with µ = 0 and σ = 1), using the two different empirical risk functions RSX

L2 and RSX

L2,L
2 .

We have used 10 training points (10 samples of the distribution) and 100 epochs with the Adam optimizer. The
experiments have been repeated 100 times. We have normalised the data to lie in the interval

[
−π

2 ,
π
2

]
.

In Table 2 we also show the result of the computation of the 95-VaR for the returns of the standard normal
distribution. As we can see we obtain much better results when we use the RSX

L2,L
2 loss function, as we expeted by the

fitting of the distribution from Figure 16.

Loss Exact Mean Confidence Interval 25-50-75 Percentiles
RSX

L2,L
2 2.64 2.68 (2.46, 2.90) 3.14− 2.71− 2.33

RSX
L2 2.64 2.07 (1, 15, 2.99) 3.14− 3.05− 2.21

Table 2: Results for the 95-VaR when we use the PQC of Figure 16. The mean VaR is computed with a 95%
confidence interval using Chebysev bounds. The percentiles are the 25− 50− 75.

The second experiment that we conduct to compare the performance under the different loss functions is shown in
Figure 17. All simulations have been performed using 250 samples of the lognormal distribution with µBS = 0.05 and
σBS = 0.5 and maturity 0.5. Each experiment has been repeated 100 times and we depict the 25, 50 and 75 percentiles
in colored solid lines.

The results from Figure 17 follow the same trend as the ones from Figure 16. The biggest impact can be seen in the
tails, where we obtain a much better performance by using the differential loss function.

In Table 3 we show the result of the computation of the 95-VaR for the returns of the lognormal distribution. In this
case, we did not observe such a big impact in the loss function, although there is some improvement.

© NEASQC Consortium Partners. All rights reserved. Page 21 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6 F∗
LN

F
L2,L

2

0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6 F∗
LN

FL2

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

f∗LN
f
L2,L

2

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

f∗LN
fL2

Figure 17: In this picture we have trained the PQC of Figure 15 to approximate the lognormal distribution with
parameters µBS = 0.05, σBS = 0.5 and T = 0.5 using the two different empirical risk functions RSX

L2 and RSX

L2,L
2 . We

have used 250 training points (250 samples of the distribution) and 150 epochs with the Adam optimizer. The
experiments have been repeated 100 times. We have normalised the data to lie in the interval

[
−π

2 ,
π
2

]
.

Loss Exact Mean Confidence Interval 25-50-75 Percentiles
RSX

L2,L
2 0.47 0.70 (0.56, 0.84) 0.99− 0.77− 0.42

RSX
L2 0.47 0.76 (0.64, 0, 88) 0.99− 0.99− 0.49

Table 3: Results for the 95-VaR when we use the PQC of Figure 17. The mean VaR is computed with a 95%
confidence interval using Chebysev bounds. The percentiles are the 25− 50− 75.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

5.Conclusions

The exploration of quantum computing techniques for quantitative finance within the NEASQC project has yielded
significant insights and advancements. However, the technology has not yet reached a level of maturity where it
can be effectively integrated into industrial applications. The current hardware constraints and the state of quantum
computing present substantial challenges.

One of the primary obstacles encountered is the significant technological gap, which prevents a direct comparison
between classical and quantum algorithms. This gap highlights the need for further development and refinement of
quantum hardware and algorithms. Despite these challenges, the project has made notable progress in several areas.
We have developed new techniques for Quantum Accelerated Monte Carlo (QAMC) and Quantum Machine Learn-
ing (QML). The advancements in QAMC are particularly relevant from a practitioner’s perspective, as the provided
pipeline closely resembles the one used by financial institutions such as our collaborator HSBC. Specifically, the fact
that we do not need to separate our Monte Carlo problem into co-domains greatly simplifies the future integration of
our libraries with existing financial libraries. Additionally, we have made significant progress in understanding new
state-of-the-art techniques such as PQCs and DML from the perspective of practical applications.

This part of the project has also produced five research papers (Gómez et al., 2022; Manzano et al., 2022; Manzano,
Dechant, et al., 2023; Manzano, Ferro, et al., 2023; Manzano, Musso, & Leitao, 2023) contributing valuable knowl-
edge to the field of quantum computing in finance. Additionally, a comprehensive software library QQuantLib (Ferro
et al., 2024) has been developed, providing implementations of the new techniques and facilitating further research
and experimentation.

Some of the techniques developed need to be tested in practice as our computational resources grow. It is challenging
to make a theoretical case for their effectiveness without practical implementation and validation.

In conclusion, while significant progress has been made in developing quantum algorithms for pricing and VaR estima-
tion, these algorithms are not yet competitive with classical algorithms when executed on current Noisy Intermediate-
Scale Quantum (NISQ) architectures. The primary challenges moving forward are twofold. First, the execution of
deep circuits required by amplitude estimation routines is not feasible without error correction techniques. Second,
the direct translation of classical circuits for Stochastic Differential Equation (SDE) simulations into quantum circuits
requires a number of qubits beyond current NISQ capabilities (see Appendix A).

© NEASQC Consortium Partners. All rights reserved. Page 23 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

List of Acronyms

Term Definition
AdaptQAE Adaptive Quantum Amplitude Estimation
AE Amplitude Estimation
BAA Bounded Approximation Algorithm
CLF Conventional Likelihood Function
CMC Classical Monte Carlo
CQPEAE Amplitude Estimation based on Classical Quantum Phase Estimation
CVA Credit Valuation Adjustment
DD Decision Diagram
EIS Exponential Increasing Schedule
ELF Engineered Likelihood Function
FAE Faster Amplitude Estimation
FT3 FinisTerrae III
GBM Geometric Brownian Motion
IQPEAE Amplitude Estimation based on Iterative Quantum Phase Estimation
IQAE Iterative Quantum Amplitude Estimation
LIS Linear Increasing Schedule
LRSP Low-rank state preparation
MC Monte Carlo
MLAE Maximum Likelihood Amplitude Estimation
MPS Matrix Product States
NEASQC NExt ApplicationS of Quantum Computing
NISQ Noisy Intermediate-Scale Quantum
PDE Partial Differential Equation
PDF Probability Distribution Function
PE Phase Estimation
PQC Parametric Quantum Circuit
QAMC Quantum Accelerated Monte Carlo
QFT Quantum Fourier Transformation
qGAN Quantum Generative Adversarial Network
QLM Quantum Learning Machine
QPU Quantum Processing Unit
QQuantLib Quantum Quantitative Finance Library
QSP Quantum Signal Processing
QSVT Quantum Singular Value Transformation
RandomQAERandom Quantum Amplitude Estimation
RC Randomised Compiling
RMSE Root Mean Square Error
RQAE Real Quantum Amplitude Estimation
SDE Stochastic Differential Equation
SSQW Split Step Quantum Walk
SVD Singular Value Decomposition
UC Use Case
VaR Value at Risk

Table 4: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 24 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

List of Figures

Figure 1.: Payoff functions for digital and vanilla options with K = 1. 6
Figure 2.: Linear payoff with K = 1.5. 7
Figure 3.: Scheme of the generation of the oracle in the square root encoding. The gate US corresponds

to Equation (3.2). The gate U√
F corresponds to Equation (3.3). 8

Figure 4.: Absolute error between the QAMC algorithm and the discretized expectation versus the re-
spective number of calls to the oracle for different precisions ϵ. The dots represent the medians
and the error bars the 25 and 75 percentiles. Each of the panels corresponds to the payoff of
different options. The experiments have been performed using the square root encoding. . . . 9

Figure 5.: Absolute error between the QAMC algorithm and the discretized expectation of an option with
a payoff (ST −K) with K = 1.5St versus the number of calls to the oracle for different values
of precision ϵ. The dots represent the medians and the error bars the 25 and 75 percentiles.
The experiments have been performed using the square root encoding. 10

Figure 6.: Absolute error between the QAMC algorithm and the discretized expectation of an option with
a payoff (ST −K) with K = 1.5St versus the number of calls to the oracle for different values
of precision ϵ. The dots represent the medians and the error bars the 25 and 75 percentiles.
The experiments have been performed using the square root encoding separating the positive
and negative parts of the payoff. 10

Figure 7.: Scheme of the generation of the oracle in the direct encoding. The gate US corresponds to
Equation (3.2). The gate UF corresponds to Equation (3.16). 11

Figure 8.: Absolute error between the QAMC algorithm and the discretized expectation versus the re-
spective number of calls to the oracle for different precisions ϵ. The dots represent the medians
and the error bars the 25 and 75 percentiles. Each of the panels corresponds to the payoff of
a different option. The experiments have been performed using the square root and direct
encodings. 12

Figure 9.: Absolute error between the QAMC algorithm and the discretized expectation of an option with
a payoff (ST −K) with K = 1.5St versus number of calls to the oracle for different values
of precision ϵ. The dots represent the medians and the error bars the 25 and 75 percentiles.
For the mRQAE we have used the direct encoding and for the mIQAE we have applied both
techniques. Moreover, in the case of the mIQAE we have separated the negative and positive
parts of the payoff for a correct pricing. 14

Figure 10.: Absolute error between the QAMC algorithm and the discretized expectation versus the re-
spective number of calls to the oracle for different precisions ϵ. The dots represent the medians
and the error bars the 25 and 75 percentiles. Each of the panels corresponds the payoff of a
different option. For the mRQAE we have used the direct encoding and for the mIQAE we
have applied both techniques. 14

Figure 11.: Sketch of a hybrid variational algorithm. U(x, θ) represents a quantum circuit that takes x as
input and with variational parameters θ, fθ(x) is the expected value of some observable and
R(fθ) is the expected loss that we want to minimize. 16

Figure 12.: Parametrized quantum circuit that can be written as a generalized trigonometric series as in
(4.1). It consists of L layers, each layer is composed by a trainable circuit block Wi(θ), i ∈
{1, ..., L} and a data encoding block S(x). The data encoding blocks S(x) are identical for
all layers, they are typically implemented using Pauli rotations. The blocks Wi(θ) can be built
from local rotation gates and CNOT gates. 17

Figure 13.: Architecture U (x,θ) used in the experiments of Section 1.3. The parameters θij are varia-
tional parameters. 17

Figure 14.: In this picture we have trained the PQC of Figure 13 to approximate the function f∗(x) = x
2π .

We have used 10 training points, the mean squared error loss function and 100 epochs with the
Adam optimizer. The experiments have been repeated 100 times. In the top left panel we have
normalised the data to lie in the interval

[
−π

2 ,
π
2

]
. In the top right panel we have normalised

the data to lie in the interval [−π, π]. In the bottom central panel we have normalised the data
to lie in the interval [−2π, 2π]. 18

Figure 15.: One layer of the PQC used in the experiments. For the experiments we use a total of three
layers. The parameters θij are variational parameters. 20

© NEASQC Consortium Partners. All rights reserved. Page 25 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Figure 16.: In this picture we have trained the PQC of Figure 15 with three layers to approximate the stan-
dard normal distribution (i.e., with µ = 0 and σ = 1), using the two different empirical risk
functions RSX

L2 and RSX

L2,L
2 . We have used 10 training points (10 samples of the distribution)

and 100 epochs with the Adam optimizer. The experiments have been repeated 100 times. We
have normalised the data to lie in the interval

[
−π

2 ,
π
2

]
. 21

Figure 17.: In this picture we have trained the PQC of Figure 15 to approximate the lognormal distribution
with parameters µBS = 0.05, σBS = 0.5 and T = 0.5 using the two different empirical risk
functions RSX

L2 and RSX

L2,L
2 . We have used 250 training points (250 samples of the distribution)

and 150 epochs with the Adam optimizer. The experiments have been repeated 100 times. We
have normalised the data to lie in the interval

[
−π

2 ,
π
2

]
. 22

© NEASQC Consortium Partners. All rights reserved. Page 26 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

List of Tables

Table 1.: Performance of different amplitude estimation algorithms. NQ denotes the number of calls to
the oracle, ϵ is the target precision and 1−γ is the confidence level. Other parameters appearing
in the table are related to each specific algorithm. For a full description of their meaning the
reader is referred to the associated references. The ∼ symbol indicates that the algorithm has an
asymptotic behaviour, while the < indicates that the performance is proved rigorously. 15

Table 2.: Results for the 95-VaR when we use the PQC of Figure 16. The mean VaR is computed with a
95% confidence interval using Chebysev bounds. The percentiles are the 25− 50− 75. 21

Table 3.: Results for the 95-VaR when we use the PQC of Figure 17. The mean VaR is computed with a
95% confidence interval using Chebysev bounds. The percentiles are the 25− 50− 75. 22

Table 4.: Acronyms and Abbreviations . 24

© NEASQC Consortium Partners. All rights reserved. Page 27 of 30

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Bibliography

Abrams, D. S., & Williams, C. P. (1999). Fast quantum algorithms for numerical integrals and stochastic processes.
Atos. (2016). Myqlm. https://myqlm.github.io/
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Blank, C., McKiernan, K., & Killoran, N. (2018). Pennylane. https:

//pennylane.ai/
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3),

637–654.
Brassard, G., Høyer, P., Mosca, M., & Tapp, A. (2002). Quantum amplitude amplification and estimation. https :

//doi.org/10.1090/conm/305/05215
Callison, A., & Browne, D. E. (2022). Improved maximum-likelihood quantum amplitude estimation. https://doi.org/

10.48550/ARXIV.2209.03321
Cantelli, F. P. (1933). Sulla determinazione empirica delle leggi di probabilità. Giorn. Ist. Ital. Attuari, 4, 421–424.
Egger, D. J., Gutiérrez, R. G., Mestre, J. C., & Woerner, S. (2020). Credit risk analysis using quantum computers.

IEEE Transactions on Computers.
Ferro, G., Manzano, A., & Musso, D. (2024). Quantum quantitative finance library (qquantlib). https://github.com/

NEASQC/FinancialApplications
Fukuzawa, S., Ho, C., Irani, S., & Zion, J. (2023, January). Modified iterative quantum amplitude estimation is

asymptotically optimal. In 2023 proceedings of the symposium on algorithm engineering and experiments
(ALENEX) (pp. 135–147). Society for Industrial; Applied Mathematics.

Giurgica-Tiron, T., Kerenidis, I., Labib, F., Prakash, A., & Zeng, W. (2022). Low depth algorithms for quantum am-
plitude estimation. Quantum, 6, 745. https://doi.org/10.22331/q-2022-06-27-745

Gómez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordóñez, G., & Vázquez, C. (2022). A survey on
quantum computational finance for derivatives pricing and VaR. Archives of Computational Methods in En-
gineering, 29, 4137–4163. https://doi.org/10.1007/s11831-022-09732-9

Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2021). Iterative quantum amplitude estimation. npj Quantum Infor-
mation, 7(1). https://doi.org/10.1038/s41534-021-00379-1

Huge, B., & Savine, A. (2020). Differential machine learning. arXiv. https://doi.org/10.48550/arXiv.2005.02347
Hull, J. (1997). Options, futures, and other derivatives (3. ed., internat. ed). Prentice Hall. http://gso.gbv.de/DB=2.1/

CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+216058376&sourceid=fbw bibsonomy
Manzano, A., Musso, D., Leitao, Á., Gómez, A., Vázquez, C., Ordóñez, G., & Nogueiras, M. (2022). A modular

framework for generic quantum algorithms. Mathematics, 10, 785.
Manzano, A. (2024). Contributions to the pricing of financial derivatives contracts in commoditiy markets and the

use of quantum computing in finance [Doctoral dissertation, Universidade da Coruña]. http://hdl.handle.net/
2183/39574

Manzano, A., Dechant, D., Tura, J., & Dunjko, V. (2023). Parametrized quantum circuits and their approximation
capacities in the context of quantum machine learning. https://arxiv.org/abs/2307.14792

Manzano, A., Ferro, G., Leitao, Á., Vázquez, C., & Gómez, A. (2023). Real option pricing using quantum computers.
arXiv. Submitted for publication.

Manzano, A., Musso, D., & Leitao, Á. (2023). Real quantum amplitude estimation. EPJ Quantum Technology, 10(1),
1–24.

Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. https://doi.org/http://doi.org/10.1098/rspa.2015.
0301

Nakaji, K. (2020). Faster amplitude estimation. Quantum Information and Computation, 20(13&14), 1109–1123.
https://doi.org/10.26421/qic20.13-14-2

Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information: 10th anniversary edition.
Cambridge University Press.

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading for a universal quantum
classifier. Quantum, 4, 226.

Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial
derivatives. Physical Review A, 98(2).

Schuld, M., Sweke, R., & Meyer, J. J. (2021). Effect of data encoding on the expressive power of variational quantum-
machine-learning models. Physical Review A, 103(3), 032430. https : / /doi .org /10 .1103/PhysRevA.103 .
032430

Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N., & Woerner, S. (2020). Option pricing using
quantum computers. Quantum, 4, 291.

© NEASQC Consortium Partners. All rights reserved. Page 28 of 30

https://myqlm.github.io/
https://pennylane.ai/
https://pennylane.ai/
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.48550/ARXIV.2209.03321
https://doi.org/10.48550/ARXIV.2209.03321
https://github.com/NEASQC/FinancialApplications
https://github.com/NEASQC/FinancialApplications
https://doi.org/10.22331/q-2022-06-27-745
https://doi.org/10.1007/s11831-022-09732-9
https://doi.org/10.1038/s41534-021-00379-1
https://doi.org/10.48550/arXiv.2005.02347
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+216058376&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+216058376&sourceid=fbw_bibsonomy
http://hdl.handle.net/2183/39574
http://hdl.handle.net/2183/39574
https://arxiv.org/abs/2307.14792
https://doi.org/http://doi.org/10.1098/rspa.2015.0301
https://doi.org/http://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.26421/qic20.13-14-2
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2020). Amplitude estimation without
phase estimation. Quantum Information Processing, 19(2). https://doi.org/10.1007/s11128-019-2565-2

Wilmott, P. (2007). Paul wilmott introduces quantitative finance (2nd ed.). Wiley-Interscience.
Zhao, Y., Wang, H., Xu, K., Wang, Y., Zhu, J., & Wang, F. (2022). Adaptive algorithm for quantum amplitude estima-

tion. https://doi.org/10.48550/ARXIV.2206.08449

© NEASQC Consortium Partners. All rights reserved. Page 29 of 30

https://doi.org/10.1007/s11128-019-2565-2
https://doi.org/10.48550/ARXIV.2206.08449

D5.12 Evaluation of quantum algorithms for finance (1.1- Final)

A.Description of the QAMC experiments

In Section 3.1, we have described the general setup of QAMC for pricing. A rough estimation indicates that we would
require the order of hundreds or thousands of qubits to build the algorithm following the same steps as its classical
counterpart. With the current hardware, this is not feasible. Hence, in order to conceptually test this technique, we
need to perform several simplifications.

If we assume only European payoffs we can make the first simplification since we do not need to store the whole paths
for the underlying. Instead, we will consider that we have just one register which encodes the value of the underlying.

The next simplification would be reducing as much as the depth of the quantum circuit which loads the probability
distribution. In practice this means that we need to restrict ourselves to models where we know the analytical form of
the underlying distribution. Thus, in this work, we will consider the classical (and well-known) model given by the
following Black-Scholes SDE under the risk neutral measure (Black & Scholes, 1973)

dSt = rSt dt + σSt dWt, (A.1)

where r denotes the risk-free rate, σ is the volatility of the underlying asset price and Wt denotes a Brownian motion in
a particular probability space, so that Wt follows a N (0, t) distribution (and its increment dWt follows a N (0, dt))..
As the expression of the probability distribution generated by the SDE (A.1) is known, we assume that we have a
unitary UBS which encodes the Black-Scholes distribution pBS in some predefined points. Note that, regardless
all the simplifications, the algorithm is conceptually the same: we have a quantum circuit specified by the oracle
US = UBS which generates samples for the underlying price at maturity, ST , with the correct probability distribution.

For all the experiments in Section 3 we have encoded the Black-Scholes probability distribution with risk-free rate
0.01 and volatility 0.5. Moreover, we have considered a one year maturity and an initial underlying value of 1.0. For
the discretization of the distribution we have considered 32 points between 0.01 and 5.0 which requires the use of 5
qubits. For any other content, we have kept the general setting.

© NEASQC Consortium Partners. All rights reserved. Page 30 of 30

	1 Executive Summary
	2 Introduction
	3 Quantum Accelerated Monte Carlo
	3.1 Conventional approach to QAMC
	3.2 QAMC in the presence of negative expectations
	3.3 An alternative pipeline for QAMC
	3.3.1 Direct Encoding
	3.3.2 Amplitude Estimation: mRQAE

	4 Quantum machine learning for risk assessment
	4.1 The effect of normalization of PQCs
	4.2 Learning a financial distribution from samples with PQCs
	4.3 Numerical experiments in finance

	5 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A Description of the QAMC experiments

