back
#publication

Modelling carbon capture on metal-organic frameworks with quantum computing

16/12/2022

Abstract

Despite the recent progress in quantum computational algorithms for chemistry, there is a dearth of quantum computational simulations focused on material science applications, especially for the energy sector, where next generation sorbing materials are urgently needed to battle climate change. To drive their development, quantum computing is applied to the problem of CO2 adsorption in Al-fumarate Metal-Organic Frameworks. Fragmentation strategies based on Density Matrix Embedding Theory are applied, using a variational quantum algorithm as a fragment solver, along with active space selection to minimise qubit number. By investigating different fragmentation strategies and solvers, we propose a methodology to apply quantum computing to Al-fumarate interacting with a CO2 molecule, demonstrating the feasibility of treating a complex porous system as a concrete application of quantum computing. We also present emulated hardware calculations and report the impact of device noise on calculations of chemical dissociation, and how the choice of error mitigation scheme can impact this type of calculation in different ways. Our work paves the way for the use of quantum computing techniques in the quest of sorbents optimisation for more efficient carbon capture and conversion applications.

Type :
journal_article
Authors :
Gabriel Greene-Diniz, David Zsolt Manrique, Wassil Sennane, Yann Magnin, Elvira Shishenina, Philippe Cordier, Philip Llewellyn, Michal Krompiec, Marko J. Rančić & David Muñoz Ramo
Location :
EPJ Quantum Technology
Date :
16/12/2022
DOI :
10.1140/epjqt/s40507-022-00155-w
Publication link :
Our website uses cookies to give you the most optimal experience online by: measuring our audience, understanding how our webpages are viewed and improving consequently the way our website works, providing you with relevant and personalized marketing content. You have full control over what you want to activate. You can accept the cookies by clicking on the “Accept all cookies” button or customize your choices by selecting the cookies you want to activate. You can also decline all cookies by clicking on the “Decline all cookies” button. Please find more information on our use of cookies and how to withdraw at any time your consent on our privacy policy.
Accept all cookies
Decline all cookies
Privacy Policy